White House Chronicle

News Analysis With a Sense of Humor

  • Home
  • King’s Commentaries
  • Random Features
  • Photos
  • Public Speaker
  • WHC Episodes
  • About WHC
  • Carrying Stations
  • ME/CFS Alert
  • Contact Us

Rare Earths Are a Crisis of Government Neglect

April 18, 2025 by Llewellyn King Leave a Comment

An old adage says “a stitch in time saves nine.” Indeed. But it is a lesson seldom learned by governments.

As you struggle through TSA screening at the airport, just consider this: It didn’t have to be this way. If the government had acted after the first wave of airplane hijackings in the early 1960s, we might never have had the Transportation Security Administration.

The government and the airlines should have done something very simple: Put locks on the cockpit doors. It was discussed among the airlines, at the Federal Aviation Administration, and at the White House Office of Science and Technology.

Then came Sept. 11, 2001, and governments acted. Massively — even too much too late.

When it comes to the emerging crisis over rare earths, whose supply and processing is almost totally controlled by China, successive administrations have sighed and done nothing. 

As the uses for rare earths have increased dramatically, the calls for the United States to do something to alleviate this dependence have been constant and loud. Action hasn’t corresponded.

The modern world runs on the 17 rare earths which are great enhancers.

Notable for sounding the alarm has been John Kutsch, executive director of the Thorium Alliance, which promotes the use of thorium as a nuclear reactor fuel.

The need for rare earths is huge in the United States — as is our attendant vulnerability.

“There is no piece of modern technology that does not use rare earths or other technology metals. There are no drones, windmills, electric cars, computers, lasers, radar systems, magnets of quality, or medical devices, which are not 100-percent reliant on China for components using their critical materials,” Kutsch told me.

It is a giant vulnerability and Kutsch and his colleagues have been drawing attention to it for 15 years.

“We have been telling the decision makers in Washington and at the Pentagon for 15 years that China will use rare earths as an economic weapon. And we were always told that they would not. Well, now the U.S. is cut off,” he said.

According to Kutsch, and others, “rare earths aren’t rare at all.” They are difficult to mine and process and, as with much else, it has just been easier and cheaper to import them from China. 

Additionally, production in the U.S. has been hampered because rare earths are found in conjunction with thorium. Thorium is a fertile but not fissile nuclear material. That means that it can’t be used in a reactor, without having the reaction initiated by a fissile material, like uranium.

But its classification as a nuclear source material means it must be inventoried and stored as a nuclear material and is classified by the Nuclear Regulatory Commission as such. This makes mining and processing rare earths challenging and expensive in the U.S.

Kutsch lamented, “Every year, Florida produces enough rare earth ore to supply the western world’s needs. We choose not to process any of that rare earth material because it would create a small amount of slightly radioactive material.

“So, we have given up on any materials refining in the U.S. and have decided to put our entire economic and national security fate in the hands of our number one adversary.”

Even if the limiting factors of associated thorium were dealt with — a national thorium bank and registry has been proposed — rare earths wouldn’t begin to flow  overnight.

We simply don’t have the expertise in mining but especially in processing rare earths. Hell, it is hard enough to get our mouths around some of the names. Try saying Praseodymium and Neodymium.

The near-future looks like this:

1. We probably have enough stockpiles held by rare earth-using companies to last for several months, but shortages will start appearing after that.

2. The military is believed to have a better stockpile, enough for a year or longer.

3. Users initiate elaborate workarounds, like using a more plentiful but less effective metal.

3. Manufacturers may reduce the size or efficiency of systems that use rare earths, like a smaller motor in an electric car.

The essential role of rare earths is as a multiplier. A wind turbine produces at least five times more electricity because of the use of exceedingly small amounts of rare earths.

What does seem outrageous, is that the U.S. has embarked on a nasty trade war with China without understanding the People’s Republic has a grip below the belt. Ouch!

Filed Under: King's Commentaries Tagged With: airlines, China, electric cars, government, John Kutsch, nuclear, rare earths, thorium, TSA, windmills

The Rare Promise of Thorium Reactors

August 24, 2015 by Llewellyn King 4 Comments

By Llewellyn King

If you want to design a new automobile, there are choices, but there are also parameters. For example, you would be advised to start with four wheels on the ground. You could design it with three, but the trade-offs are considerable.

When it comes to designing a new nuclear reactor for generating electricity, there are no such absolutes. A nuclear reactor only needs a safe nuclear reaction and the ability to harness the resulting heat. That means that nuclear reactors can be configured in all kinds of ways with considerable variety in the design of the fuel, the size of the reactor, the cooling system and the moderator (usually water).

Not only can the configuration of the fuel vary with differing results, but the fuel also can vary. It can be, for example, the intriguing metal thorium, which is plentiful in nature. It is fertile but not fissile, which means it takes uranium or plutonium to get a nuclear reaction going. When that happens, a thorium reactor appears to have advantages, from the availability of the fuel to the safety of the reactor.

Yet most of the world’s commercial civilian reactors – more than 400 — have just one basic design: uranium-fueled light water. The moderator is water.

Adm. Hyman G. Rickover, the father of the nuclear Navy, favored this technology. Recognizing that left to their own devices, nuclear engineers would come up with dozens of reactors, and would stymie the effort get industry off the ground, Rickover pushed light water. The admiral was a man who got what he wanted. So the light water reactor (LWR) became the world standard with some national exceptions.

Canada developed a very successful reactor that uses natural uranium, but requires heavy water: water with an extra hydrogen atom. Britain built two different reactor designs, the Magnox and the Advanced Gas Reactor, but finally has come around to the light water reactor. The Soviet Union went ahead with its own designs, including the disastrous Chernobyl design.

Although LWR construction steams ahead in China, and more hesitatingly elsewhere, there is a sense that it is time for change. Time to look at other designs and fuels.

In the United States, the Department of Energy has stimulated interest in a new generation of small modular reactorsand some ideas, which got pushed aside by light water technology, are doggedly holding on and even fighting back. Among these are various gas reactor concepts and fast reactors, where the neutron flux is not slowed down and which can do amazing things, including burning a certain proportion of nuclear waste.

The molten salt thorium reactor continues to have its advocates, although this technology is not included in DOE’s small modular reactor program. It is not a new idea, but it is one that has been given short shrift from the nuclear establishment in recent years. Promising work on it was done at the Oak Ridge National Laboratory in Tennessee in the 1960s, under the legendary scientist and laboratory director Alvin Weinberg. He died in 2006, and I was lucky to have known him. 

Proposed thorium molten salt research reactor. Source: Thorium Energy Alliance

Proposed thorium molten salt research reactor. Source: Thorium Energy Alliance

When I attended the Thorium Energy Alliance annual conference, held in Palo Alto, Calif., this year, I felt I had stumbled into an old-fashioned revival meeting. They are believers. Work on thorium-fueled reactors is ongoing in China, India and Russia.

But the best hope for thorium future may not lie in the nuclear sphere at all. It may rest with rare earths, and the global appetite for these in a high-tech world. A simple way to understand rare earths is that in technology they are great multipliers, making products in consumer electronics, computers and networks, communications, electricity generation, health care, advanced transportation, and across a wide range of defense materiel, more effective. With a small application, say to the turbine in a wind generator, the efficiency may increase several times.

Rare earths — which are not really rare at all — are found in conjunction with thorium, often in phosphate mining. When the world gets serious about the rare earths supply, it has to get serious about thorium, especially in the United States.The Thorium Energy Alliance would like to see thorium put into a national stockpile, so that it is available when the pendulum in reactor design swings to thorium, and that becomes the future. 

Can the 17 rare earth elements become the thorium reactor’s enabler? Some devoutly believe so. — For the InsideSources news service.

 

Filed Under: King's Commentaries Tagged With: Advanced Gas Reactor, Alvin Weinberg, heavy water reactor, King Commentary, light water reactor, Magnox, Oak Ridge National Laboratory, rare earths, small modular reactor, thorium, Thorium Energy Alliance, thorium reactor

The Rare Earths Problem: A U.S. Solution

March 30, 2015 by Llewellyn King Leave a Comment

Rare earth elements – there are 17 of them – have the world’s manufacturing by the throat. They are, as John Kutsch, director of the Thorium Energy Alliance, says, “the great multipliers.” They make metals stronger, generators more efficient, cell phones smaller, television sets sharper, and laptops lighter. They are, in their way, as important to modern manufacturing as energy.

At one time, the United States was a major supplier of rare earths — with supplemental supplies coming from countries around the world, including Australia and Brazil. Today, 90 percent of the rare earths the world uses come from China.

The use of rare earths is as important in lasers and jet engines as it is in aiming cruise missiles, which means the United States, and the rest of the world, has a huge vulnerability: China controls the supply of new war-fighting material. All U.S. defense manufacturers – including giants Boeing, General Electric and Lockheed Martin — are dependent on China. Now China is demanding that U.S. companies do more of their manufacturing there: China wants to control the whole chain.

Yet, as the rare earth elements industry is quick to assert, rare earths are not rare; they are scattered generously throughout the world. So why China’s dominance?

China has three main advantages. The first is that in 1984, leader Deng Xiaoping adopted a major initiative, the so called 863 Program, to move China from being a simple supplier of raw materials and products, enhanced by cheap labor, to being an industrial powerhouse and scientific giant. Rare earths were one of the areas singled out in the program.

The second advantage is that the Chinese ignored – and, to a large extent, still do — the environmental costs of rare earths’ extraction. The environmental damage is described by those who have been to one of two major Chinese sites, which have a combined population of 17 million, as catastrophic, with mountains bathed in acid to remove the sought-after rare earths, resulting in lakes of acid.

China’s third advantage is a natural one: It has a lot of ionic clay, which contains rare earths without the associated uranium and thorium.

About the time China was ramping up its plans to dominate the world rare earths market, the United States, in conjunction with the International Atomic Energy Agency in Vienna, began to regulate so called source materials. These are materials which, at least in theory, could be fashioned into weapons. In reality, those associated with rare earths are not in sufficient quantity to interest potential proliferators.

But the regulations are there. Many in the rare earths elements industry believe that it was these regulations — particularly as affecting thorium — that crippled production around the world and essentially closed down the U.S. industry, just as demand was escalating.

There is a commercial market for uranium. While hardly any thorium is used nowadays, it was once used in some scientific instruments and mantles for lighting. Thorium is akin to uranium in atomic weight, and it is a fertile nuclear material. That means that it can be used in a nuclear reactor, but it has to be ignited by a fissile material, such as enriched uranium or plutonium.

Thorium is radioactive, but mildly so. It is an alpha emitter, which means it can be shielded with tissue paper and will not penetrate the skin. However, it has a half-life of 1.5 billion years.

The answer, according to James Kennedy, a science consultant and rare earths expert, is to develop a reactor using thorium instead of uranium. This reactor, called a molten salt reactor, is inherently safe, say its passionate advocates, and would be a better all-around nuclear future. The technology was pioneered by one of the giants of the early nuclear age, Alvin Weinberg, at the Oak Ridge National Laboratory, but abandoned under pressure from enthusiasts for light water reactors, the kind we have today.

The Thorium Energy Alliance believes that the United States and other countries should develop a cooperative to source rare earths from the existing mining of phosphates and metals and store the thorium until it becomes a useful fuel. A bill to do this is making its way through Congress, but its chances are slim. Short of putting a value on thorium and isolating it, the chances of a rare earth elements industry reawakening in the United States, or elsewhere, is rare. — For the Hearst-New York Times Syndicate

Filed Under: King's Commentaries Tagged With: 863 Program, Alvin Weinberg, China, Deng Xiaoping, International Atomic Energy Agency, ionic clay, King Commentary, nuclear reactor, Oak Ridge National Laboratory, plutonium, rare earth elements, rare earths, thorium, Thorium Energy Alliance, United States, uranium

White House Chronicle on Social

  • Facebook
  • Twitter
  • Vimeo
  • YouTube
Make Public Broadcasting Great Again by Shaking It Up

Make Public Broadcasting Great Again by Shaking It Up

Llewellyn King

The animus that has led President Trump to order an end to federal funding of PBS and NPR isn’t new. Public broadcasting has been an irritant to conservatives for a long time. Conservatives say public broadcasters are biased against them, especially PBS; they are a kind of ground zero for all things “woke”; and they […]

California Doctor Opens a New Front in Cancer War

California Doctor Opens a New Front in Cancer War

Llewellyn King

In the world of medicine, immunotherapy is a hot topic. It has uses in the treatment of many fatal diseases, even of aging. Simply, immunotherapy is enhancing and exploiting the body’s natural immune system to fight disease. Think of it as being like a martial art, where you use an opponent’s strength against him. Call it medical Judo. Dr. […]

How Trump and Technology Have Turned the Press Corps From Lions to Hyenas

How Trump and Technology Have Turned the Press Corps From Lions to Hyenas

Llewellyn King

Political messaging isn’t what it used to be. Far from it. It used to be that the front pages of The Washington Post and The New York Times were an agenda for action. This power was feared and used by successive presidents in my time, from Lyndon Johnson to Joe Biden, but not by Donald Trump. […]

Rare Earths Are a Crisis of Government Neglect

Rare Earths Are a Crisis of Government Neglect

Llewellyn King

An old adage says “a stitch in time saves nine.” Indeed. But it is a lesson seldom learned by governments. As you struggle through TSA screening at the airport, just consider this: It didn’t have to be this way. If the government had acted after the first wave of airplane hijackings in the early 1960s, we […]

Copyright © 2025 · White House Chronicle Theme on Genesis Framework · WordPress · Log in